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Research was conducted and directed in the area of stochastic processes by

i T T N

/_\ /%- .
three of the Principal Investigators (Cambanis, Kallianpur, Leadbetter) and

their associates, and in estimation in statistical models,by R.J. Carroll and
co-workers. A summary of the main lines of activity in each area follows for
each of the four Principal Investigators. More detailed descriptions of the

work of all participants is given in the main body of the report.

STOCHASTIC PROCESSES

The research effort in stochastic processes was a major part of a
substantial research activity organized as the Center for Stochastic Processes
within the Statistics Department, involving permanent faculty, visitors and
students.

This organization has provided the framework for significant interaction
between the participants--permanent and visiting. In addition the research

program has been enhanced by a regular seminar series (listed by speakers later

in the report) which has provided an excellent vehicle for exchange of current
research ideas.

The primary means for dissemination of results is by means of the Center's
Technical Report Series, containing current research work prior to formal i}
journal submission. To date 23 technical reports leading (or expected to lead)
to published papers have been produced by the participants, involving research

results in a wide area of stochastic process theory. The main areas of research

activity for each Principal Investigator and co-workers are as follows! —

-~ o7
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S. Cambanis: ‘Asymptotic optimal quantizers, complex symmetric stable

variables and processes, prediction and representation of stable processes,
nonparametric spectral density estimation for stable processes, delayed delta

and pulse code m:clulationj )
S

G. Kalliangur:afr'eyman integrals, stochastic nonlinear filtering, stationary

random fields, stochastic differential equations and diffusion approximation

models for neuron activity, white noise and generalized Brownian functionals,

stochastic Radon transforms, splicing of measures.gw)
)

Vet S
M.R. Leadbetter: 3)Extreme values of stationary stochastic sequences and

processes, dependence structure of stochastic processes, extremes of

non-stationary normal sequences, estimation of point process intensities.

ROBUST ESTIMATION IN LINEAR MUDELS

R.J. Carroll: Transformations and regressions: tests for regression

parameters in power transformation models, power transformations and prediction;
heteroscedastic linear models: robust estimators for random coefficient
regression models, adapting for heteroscedasticity, maximum likelihood and
generalized least squares, bounded influence methods; linear and binary
regression with errors-in-variables: robustness in the functional
errors-in-variables regression model, comparison between estimators, binary

models.
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The work briefly described here was developed in connection with problems
arising from and related to the statistical cammnication theory and the
analysis of stochastic signal and systems. Item 1 is the completion, and recent
extension, of joint work with my student Neil L. Gerr, whose Ph.D. dissertation
in its final form is described in item 5. Item 3 is the campletion of joint
work with Dr. Reza Soltani, a junior visito.r supported by this grant. Item 4
describes continuing joint work with Elias Masry of the University of California

at San Diego. Further work in progress will be described at the end of the
current funding periad.

1. A simple class of asymptotically optimal quantizers [1]

A simple class of quantizers is introduced which are asymptotically
optimal, as the number of quantization levels increases to infinity, with
respect to rth mean distortion measure. These asymptotically optimal quantizers
are very easy to compute. Their performance is evaluated for several
distributions and compares very favorably with the performance of the optimal
quantizers in all cases for which the latter have been computed. Also their
asymptotic robustness is studied under location, scale and shape mismatch for

several familles of distributions.

2, Camplex symmetric stable variables and processes [2])

In order to make efficient use of spectral methods in the analysis of
problems involving stationary stable processes, it is necessary to extend to

complex stable variables and processes the structure and tools which have been




..............

developed for the real case in [3,4,5] and this is done in this article. The
concepts, tools and properties considered include the covariation, linear
regression, moments and the stochastic integral. The stochastic integral is
considered in the most general case using the concept of covariation. This
approach is simple and adequate for most linear problems, but it does not
provide an expression for the characteristic function of the integral. In the
important special case of integration with respect to a process with independent
stable increments, the characteristic function of the integral in the complex
case is obtained using Hosoya's (6] approach, which is refined and completed
here.

3. Prediction of stable processes: Spectral and moving average

representation {7]

For stable processes which are Fourier transforms of processes with
independent increments we obtain a Wold decomposition, we characterize their
regularity and singularity, and, in the discrete-parameter case, we derive their
linear predictors. 1In sharp contrast with the Gaussian case, regular stable
processes which are Fourier transforms of processes with independent increments

are not noving averages of stable motion.

4. Nonparametric spectral density estimation for stable processes [8]

It has been shown in [5] and (7] that in problems of linear prediction and
filtering, when the signal and noise are stable processes with spectral
representation, the "spectral density" of these stationary stable processes
plays a role analogous to the role the usual spectral density plays for second
order stationary processes, hence the need to develop consistent estimates of

the spectral density from long records of a sample function of such a stationary
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stable process. Both weakly and strongly consistent estimates are dbtained,
along with rates of convergence.

5. Exact analysis of delayed delta modulator and an adaptive differential
pulse—code modulator [9]

Delayed Delta Mcdulation (DDM) uses a second feedback loop in addition to
the standard DM loop. While the standard loop compares the current predictive
estimate of the input to the current sample, the new loop compares it to the
upcoming sample so as to detect and anticipate slope overloading. Since this
future sample must be available before the present ocutput is determined and the
estimate updated, delay is introduced at the encoding.

The performance of DDM with perfect integration and step-function
reconstruction is analyzed for each of three inputs. In every case, the
stochastic stability of the system is established. For a discrete time i.i.d.
input, the (limiting) joint distribution of input and output is derived, and the
(asymptotic) mean square sanple joint error MSE(SP) is computed when the input
is Gaussian. For a Wiener input, the joint distribution of the sanple point and
predictive errors is derived, and MSE(SP) and the time-averaged MSE (MSE(TA))
are computed. For a stationary, first-order Gauss-Markov input, the joint
distribution of input and output is derived, and the MSE(SP) and MSE(TA)
computeé. Graphs of the MSE's illustrate the improvement attainable by using
DDM instead of I.JM. With optimal setting of parameters, MSE(SP) (MSE(TA)) is
reduced about 15% (35%).

An Adaptive Matched Differential Pulse-Code Mcdulator (AMDPCM) is analyzed.
The adaptation of the symmetric uniform quantizer parameter A, is performed
by fixed multipliers assigned to the quantizer output levels. The input is

stationary first-order Gauss-Markov. The correlation of the samples is used as

the leakage parameter in the matched integrator, with the predictive
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reconstruction similarly matched.

We examine the stochastic stability of this sytem when the range of A n is

L

unconstrained. For a 4-level quantizer and multipliers (Y’l,y) we derive the

. A s

limiting joint distribution of the predictive error and B and campute and

plot as functions of Y €(1,2], MSE(SP), MSE(TA), and the asymptotic mean and

. : l.' PR

variance of A - We find that the asymptotic performance of AMDPCM does not

depend on the choice of Ao, that the increase in MSE incurred by using

M

A(MIDECH instead of (M)DRCM with 8 . is small, with MSE(A(M “°CM) +min,
N :
‘ MSE((M)DPCM) as Yy + 1, and that the signal-to-noise ratio of &AM Y does not

depend on the input power.
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o~ Research was carried out in the following areas:

N

E:-'j: 1. Feynman Integrals

*" Continuation and extension of earlier joiht work with my former student C.

Bromley and now partly in collaboration with Professor D. Kannan, visitor at the
Center from the University of Georgia. Problems arising out of this work will

be investigated jointly with Professor G. Johnson of the University of Nebraska
at Lincoln.

2. Stochastic Nonlinear Filtering Theory

This has been my major area of interest for many years. A completely new
approach to the subject is being developed which has already yielded surprising
and gratifying new results. The work which is still -ontinuing, is jointly with
Dr. R.L. Karandikar, visitor at the Center from the Indian Statistical

Institute, Calcutta.

3. Stationary Randam Fields

Collaborative work (part of which was reported last year) with Professor V.
Mandrekar, visitor at the Center fram Michigan State University.

4. Stochastic Differential Bquations and Diffusion Approximation Models tor

the Activity of Neurons

This research is the outcome of discussions with Dr. M. Habib, Department
of Biostatistics, and Dr. T. McKenna, formerly of the Department of pPhysiology,
University of North Carolina at Chapel Hill. The later work is jointly with

Professor R. Wolpert, visitor at the Center from Duke University.
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5. White Noise and Generalized Brownian Functionals

This is an area of stochastic analysis of which Professor T. Hida of Nagoya
Unive_rsity, Japan, has been one of the founders. During a brief visit to the
Center, we collaborated on some aspects of the suwoject related to finite

dimensional approximation.

6. Stochastic Radon Transforms

Professor D. Kolzdw (visitor at the Center from the University of
Erlangen-Niirnberg) and I have discussed this problem with a view to future
collaboration. The work of Professor S. Takenaka, reported separately, seems to
be closely related.

7. Splicing of Measures

This is a problem in measure-theoretic probability theory which was solved
in joint work with Dr. D. Ramachandran, visitor at the Center and now at the
University of Georgia.

Items 4 and 5 are new directions of research started within the last year.
Items 1, 2 and 3 are a continuation of previous work.

Three of my Ph.D. students, Hans Hucke, Mauro Marques and Victor
Perez-Abreu will be working on problems arising from Items 2 and 4.

A brief summary of work done under each item is given below.

[1)] Feymman inteqrals [1,2,3,4]

Following the analytic continuation approach involving several camplex
variables which was developed in [1,2]) a sequential definition was given in the

abstract Wiener space context. A Cameron-Martin formula was derived for a class

of functionals which includes and is larger than the class of Foaurier transforms
of bounded complex measures on Hilbert space. The formula holds both for the
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analytic Feynman and the sequential Feynman integral. This result is related to
same recent work of Elworthy and Truman [3].
We are currently investigating the relationship between the sequential

definition and the definitions given by Cameron and Storvick and by Truman.

et b i S B

Further details are given in Kannan's report. A paper now in preparation gives

a comprehensive survey and comparison of the various methods now available for

R

the definition and evaluation of Feynman integrals [4]). Applications to
problems of Quantum Mechanics, relationships to other definitions (such as via
the Trotter-Kato product formula) will be taken up in our later work.

(2] Nonlinear filtering: A finitely additive white noise approach
(5,6,7,8]

The stochastic integrals of Ito and Stratonovich, stochastic differential

Ko S e e Bttt el adhoncd.

equations and, more generally, stochastic calculus have been used with
spectacular success in the development of Filtering and Control theory [5). It
is only in recent years that a re-examination of the theory has begun from the
point of view of applications. In a series of papers which are the forerunners ‘
of our own work Balakrishnan has questioned the adequacy of the existing theory '
(see [6]) and advocated the use of finitely additive white noise theory. His

reasons are based on practical considerations, viz., that the Wiener process as

. At SRR

a model for dbservation noise leads to results which cannot be implemented. 1In

(7] and (8] we have constructed a complete theory of nonlinear filtering for the

PR}

important case when signal and observation noise are independent. The starting
point is that of Balakrishnan and I.E. Segal. We supply a suitable definition

of conditional expectation in the finitely additive set up.
White noise versions of the Kallianpur-Striebel formula, the Zakai
equation, the Kunita equation and the Fujisaki-Kallianpur-Kunita (FKK) equation

are obtained. When the observation process is finite dimensional, a partial
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‘*i differential equation for the unnormalized density (in the finitely additive

- context) is derived and the existence and uniqueness of its solution is
3 established.

The white noise approach has the following advantages:

(a) The theoretical framework within which filtering is performed is a

Hilbert space Hy of (relatively smooth) observation paths of Wiener measure

zero but which represent the actual observations.
0K (b) It leads to a robust procedure when the dbservations are restricted to
H.r.

(c) The robust solutions obtained by Davis and others using the
conventional Ito calculus can be approximated by the solutions in (a). (See
7.

In the case the observation process takes values in an infinite-dimensional
Hilbert space K, there is no conditional density. The measure-valued equations
of Zakai, Kunita and FKK types are studied directly and existence and uniqueness

of their solution for each path y in L2([0,T]:K) is established (8]. (It

should be noted that these equations are not stochastic equations of Ito type
but "ordinary" equations in which the observed y appears as a parameter).

Robustness is also shown within L2([0,T];K).

{3) Second order stationary random fields [9,10])

The first part of the work which was reported last year, was concerned with
the "time domain” analysis of discrete two parameter second order ranodm fields
(s.o.r.f) [9]. A definition of pure nondeterminism was given which led to a
decomposition of the Hilbert space of the s.o.r.f. and to a corresponding four

~fold Wold decomposition of the s.o.r.f. itself. Also, it was shown that

there were three distinct kinds of innovation spaces for this problem.

The second part of the work, c_arried out in the current year,generalizes

the four-fold Wold and Halmos decompositions to continuocus 2-parameter
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s.o.r.f.'s (10]. These results are consequences of a generalization obtained by
us of J.L.B. Cooper's work to the case of two commuting continuous semigroups of
isometries acting on a separable Hilbert space and satisfying certain
conditions.

A new type of Karhunen representation is derived and the Cramer-Hida theory
of multiplicity is extended: It is shown that associated with a continuous,
stationary, purely nondeterministic s.o.r.f. is a uniquely determined triplet of
.‘-':_." (possibly infinite) numbers called the multiplicities of the s.o.r.f. Of these,
two are directional mltiplicities and the third, 2-dimensional. Furthermore
they are identified as the dimensions of certain subspaces of the Hilbert space
of the s.o.r.f.

(4] Stochastic differential equations and diffusion approximation models

for the activity of neurons {(12,13,14]

There is an extensive literature on stochastic models in neurophysiological
problems. The work most closely related to our interest in neuronal behavior

are the papers of Tuckwell and his co-workers and those of Ricciardi and his

colleagues (See [12] for references). Our concern has been to construct a
precise theory which reconciles the use of the discontinuous and the continuous
models oonsidered in the literature.

(i) A diffusion approximation to a discontinuous stochastic model for
neural response (the Tuckwell-Cope model) was established using the functional
-central limit theorem of Liptser and Shiryaev [12). Under certain basic
assumptions necessary and sufficient conditions were obtained for the weak
convergence of the sequence of probability measures (on Skorokhod space)
correspording to the Tuckwell-Cope model to the measure of an Ornstein-Uhlenbeck

type (OU) process. A central problem of interest in the study of neuronal

activity is the distribution of interspike intervals, i.e. intervals between

------------
.................
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‘ consecutive (random) "firings" of the neuron. The problem is equivalent to
N
l'.'j: finding the distribution of the first passage times for Markov processes if the
" activity of the membrane potential is modeled as a Markov process. The problem
i is a very difficult one and solutions in closed form are hard to get even for

;L::E the most frequently studied case of the OU process. However, at least the
~ following qualitative result has been proved: Ifr'c' is the first passage time
corresponding to the nth Tuckwelll-Cope model (for a constant threshhold c),
then T:"’Tc in distribution, T being the first passage time of the (OU process)
diffusion approximation.

(ii) (with R. Wolpert, [13]). In (i) a single neuron is considered. A
more realistic model is to study the activity of a large assemblage of neurons,
in other words, to take the spatial extent of neurons also into account.
Mathematically, the problem calls for more sophisticated techniques. The
approach adopted here leads to infinite dimensional stochastic differential

equations. See the report on Wolpert's work for details.

[5] white noise and generalized Brownian functionals [15]

Details are given in Hida's report.

[{6] Stochastic Radon transforms

Details are given in Kolzow's report.

[7) Splicing of measures {16,17]

Given two probabilities v and v on (X,A) and (X,B), a probability Y on (X,AVv
B 1is called a splicing of v and v if Y(A'B) = U(A)*V(B) for all AcA and B¢ B .
We use a result of Marczewski to give an elementary proof of Stroock's result

[17) on the existence of a splicing. A new proof of Marczewski's result is also

given together with comments on the splicing problem for compact measures [16].
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1. G. Kallianpur and C. Bromley, Generalized Feynman integrals using analytic
oontinuation in several camplex variables, Center for Stochastic Pro-
cesses Technical Report No. 1, Oct. 1981. To appear in Stochastic
Analysis, M. Pinsky, ed., Marcel-Dekker, (1982).
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Kallianpur, A generalized Cameron-Feynman integral, Statistics and
Probability: Essays in Honor of C.R. Rao, G. Kallianpur, P.R.
Krishnaiah, J.K. Ghosh, eds., North Holland (1981).

G. Kallianpur, A Cameron-Martin formula for Feynman integrals, Center for
Stochastic Processes Technical Report No. 13, June 1982,

G. Kallianpur and D. Kannan, Sequential Feynman integrals, Center for Sto-
chastic Processes Technical Report in preparation.

G. Kallianpur, Stochastic Filtering Theory, Springer-Verlag (1980) (See
references therein).

A.V. Balakrishnan, Nonlinear white noise theory, Multivariate Analysis V,
P.R. Krishnaiah, ed., North Holland, (1980).

G. Kallianpur and R.L. Karandikar, A finitely additive white noise approach
to nonlinear filtering, Center for Stochastic Processes Technical Re-

port No. 21, October 1982. To appear in J. of Applied Mathematics
and Optimization.

G. Kallianpur and R.L. Karandikar, A white noise approach to nonlinear fil-
tering-infinite dimensional signal and observation process, Center for
Stochastic Processes Technical Report in preparation.

G. Kallianpur and V. Mandrekar, Nondeterministic random fields and Wold and
Halmos decompositions for commuting isometries, Center for Stochastic
Processes Technical Report No. 2 (revised August 1982). To appear in
Prediction Theory and Harmonic Analysis, A Pesi Masani Volume, V.
Mandrekar and H. Salehi, eds., North Holland, (1982),

G. Kallianpur and V. Mandrekar, Canmmting semigroups of isometries and Kar-
hunen representation of stationary random fields, Center for Stochas-
tic Processes Technical Report No. 7, March 1982. To appear in
Proceedings of the IFIP-ISI Conference on the Theory and Application
of Random Fields, G. Kallianpur, ed., (To be published in the
Springer lecture Notes Series).

G. Kallianpur, Same remarks on the purely nondeterministic property of se-
cond order random fields, Proceedings of IFIP Conference on Stochas—
tic Differential Systems at ViSegrad, Hungary (1980).
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- 12. G. Kallianpur, On the diffusion approximation to a discontinuocus model for
N a single neuron, Center for Stochastic Processes Technical Report No,
18, August 1982. To appear in "Contributions to Statistics: Essays
o in Honour of Professor Norman L. Johnson,”™ P.K. Sen, ed., North Hol-
land 1982.
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13. G. Kallianpur and R, Wolpert, S(Rd)'—valued diffusion approximations to sto-
chastic models for spatially distributed neuronal responses. Center
for Stochastic Processes Technical Report in preparation.
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14, G. Kallianpur and R. Wolpert, A derivation of Omstein-Uhlenbeck type sto-
chastic differential equations for infinite dimensional processes,
Center for Stochastic Processes Technical Report in preparation.

1
fares 15. T. Hida, Analysis of Brownian Functionals, Carleton Math. Lecture Notes No.
13, 1975, .

16. G. Kallianpur and Dr. Ramachandran, On the splicing of measures, Center for
A Stochastic Processes Technical Report No. 4, Dec. 198l. To appear in
NN Annals of Probability.
A%

17. D. Stroock, Same comments on independent o-algebras, Colloqg. Math. 35,
(1976).

18. T. Hida and G. Kallianpur, Finite dimensional approximation to white noise,
X2 Center for Stochastic Processes Technical Report under preparation.
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Professor leadbetter's primary research effort under the contract involved
extremal theory for stochastic sequences and processes. Two main directions
have been investigated: (a) the role played by the "local dependence" structure
of a stochastic sequence in affecting the distribution of its maxima, and (b)
the effect of non-stationarity in extremal results. The results of (a) have
been discussed as a technical report and those of (b) are in a technical report
under current preparation.

In addition M.R. Leadbetter worked with Diane Wold on the estimation of
intensity functions of point processes, with results also appearing as a
technical report. The following abstracts summarize the results dbtained in

these three papers.

1. BExtremes and local dependence in stationary sequences [1]

Extensions of classical extreme value theory to apply to stationary
sequences generally make use of two types of dependence restriction:

(a) a weak "mixing condition"™ restricting long range dependence,

(b) a local condition restricting the "clustering of high level exceedances

The purpose of this paper is to investigate extremal properties when the
local condition (b) is omitted. It is found that, under general conditions, the
type of the limiting distribution for maxima is unaltered. The precise
modifications and the degree of clustering of high level exceedances are found
to be largely described by a parameter here called the "extremal index" of the

sequence.
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- 2, Extremes of non-stationary normal sequences (2]

It has been shown in recent years that classical extreme value theory
' extends to apply to stationary sequences under appropriate restrictions on the

- amount of dependence involved. 1In particular the theory applies to stationary
[:‘-".: normal sequences under a simple condition concerning the rate of decay of the
correlation sequence. 1In this paper similar results are obtained for

non-stationary normal sequences with a wide variety of possible forms for the
. mean and correlation structure. In particular the work includes stationary

cases with added trends and seasonal components.

- 3. On estimation of point process intensities [3]

Smoothed estimations are developed for the intensity function (i.e. density
for the expectation measure) of a point process. The main results concern mean
square and almost sure pointwise consistency and asymptotic distributional
properties of the estimator, emphasizing the features which differ from those in
other forms of function estimation. The results are illustrated in the

particular case of renewal processes.

References

1. M.R. leadbetter, Extremes and local dependence in stationary sequences, Cen-
ter for Stochastic Processes Technical Report No. 12, June 1982.

2. M.R, leadbetter, Extremes of non-stationary normal sequences, Center for
Stochastic Processes Technical Report under preparation.

3. M.R. leadbetter and D. Wold, On estimation of point process intensities,
Center for Stochastic Processes Technical Report No. 16, July 1982.
To appear in "Contributions to Statistics. Essays in Honour of N.L.
Johnson," P.K. Sen, ed., North Holland 1982.
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DARYL J. DALEY

Dr. Daley conducted research in two areas under support from the contract.

First he considered limit laws for the maximum of weighted independent and

identically distributed random variables as part of the general research effort

& T v v
2l T,

in extremal theory being conducted under the contract. In addition he
investigated the problem of obtaining useful lower bounds for the mean waiting
time in a certain class of queueing problems. Abstracts of papers under

preparation in each area are as follows.

v,

. 1. Limit laws for the maximum of weighted i.i.d. random variables [1] #
‘ Define Mn = max(xo,xl,..., xn_l) for a sequence (xn) of i.i.d. A
%2 r.v.s. with d.f. F. Gnedenko (1943) exhibited the class G of all possible ]

non-degenerate limit laws for M, and discussed domains of attraction of F
for various elements of G. Prompted by the study of limit laws as a + 1 of the

r.v. Y(a) = supn(anxn), we also sought limit laws as b + 0 of the r.v,

" Z(b) = supn(xn - nb) and, quite generally, of
‘.’ M= Mw,v) = alpn(wn(a)xn - vn(b)) .
‘~ for sequences of weights (wn(a)) and translates (v (b)).
E First, we show that M is finite with probability zero or one, and identify J
v conditions under which M is finite with probability one, namely, in the !
':', non-trivial case that F(x) < 1 for all finite positive x, that tj
: nZO(l-F((x"'Vn)/wn” <» for some finite x. We then show that a limit law :
for M belongs to G if the r.v.'s E
\ M (W) = sup (w X, - v ) ;
have a limit law in G, which is little more than a restatement of Gnedenko's

definition of G via a functional equation for types of d.f.'s. As corollaries,

- limit laws for Y(a) and z(b) belong to G, but we also show that not every F
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Dr. de Haan investigated the extent to which the term "max stable” used to
describe a random variable may be extended to spply to both random sequences and

continuous time processes. Representations and other properties were cbtained

and reported a technical report, whose abstract follows.

B s W o ——-

A spectral representation for max-stable processes [1]

The elements of an arbitrary max-stable sequence are exhibited as

functionals of a 2-dimensional Poisson point process. The result is extended to

WL R LTl T AT AT o A

a continuous time max-stable process that is continuous in probability. We

define an analogue of a stochastic integral appropriate for this context.

References

1. L. de Haan, A spectral representation for max-stable processes, Center for
Stochastic Processes Technical Report No. 15, July 1982,
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J. TIAGO DE OLIVEIRA

Dr. Tiago de Oliveira conducted research in the area of extreme values for
bivariate sequences of random variables. Specifically pairs (xn,Yn) were
considered, where X, and Y are (usually) dependent random variables but the
pairs are independent for different values of n. This work thus provides one
step in extending the contract work on univariate theory of extremes of
processes to apply to multivariate cases. The research undertaken was described

in a technical report as summarized in the following abstract.

Bivariate extremes: Models and statistical decision [1])

After obtaining the asymptotic distribution of bivariate maxima, a direct
characterization of the asymptotic distribution is given; the 5 known models are
described through their dependence functions and some properties cbtained.
Known statistical decision results for the models are described.

References

Oy 1. J. Tiago de Oliveira, Bivariate extremes: Models and statistical decision,
Center for Stochastic Processes Technical Report No. 14, June 1982.
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T. HIDA

Hida worked on the following topics during his stay at the Center.

1. Delta function of Brownian motion

Following the idea explained in [1] it is possible to make such a

functional as
¢t = §(B(t)-y), 6 the delta function , B(t) a Brownian motion,

to be a generalized Brownian functional. Detailed properties of it were
obtained jointly with H.H. Kuo. An alternative method of defining the Brownian
local time is given by using the functional ¢t. By replacing B(t) with a
linear functional of the B(t), it was proved that the functional plays a similar
role to the ordinary delta function.

2. Infinite dimensional Gaussian kernel

It was rigorously proved that a functional formally expressed in the form
v = expl-1/2f3 BetrZ%at], T >0,
can be shown to be a generalized Brownian functional. The renormalized one may
be viewed as an infinite dimensional analogue of the Gaussian kernel. 1In fact,
if we use the theory of Fourier transform introduced to the space of generalized

Brownian functionals by Kuo, we can give plausible interpretations to the fact
that the functional ¥ looks like a Gaussian kernel.

3. PFinite dimensional approximation to white noise

This work has been done and is still being done jointly by G. Kallianpur
and Hida. Starting from a formal expression

B(t) = Zj=1xjej(t),
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; where (ej) is a complete orthonormal system of L2<[o,11) and [xj} is a
system of independent identically distribute Gaussian random variables. The nth
approximation is given by

o X.e.(n)

j=1 jej n [

With this approximation to B(t) we are able to give an approximation to the

-],

-

B, (t) =)

4

- ,
‘e p g f

differential operator 3/o é(t), the exact meaning of which was not quite well

s I s TvTETY 47 WS- - d

visualized. By having such an approximation we can compare the operator 3 /0B(t)
to finite dimensional differential operators.
A unified method of having renormalization of formal Brownian functionals

has so far been given by using the T-transformation
(TO)(E) = fgr expli <x,E>]000du(x), ¢ € L2(S*,W) .

PRVCPLIAPLHL IESEL

However this approximation will give another, more reasonable interpretation to

renormalization.

4. Conformal gqroup

The infinite dimensional rotation group (see [l]) leads us to discuss, as
it were, infinite dimensional harmonic analysis, which will be an important part

of our analysis of generalized Brownian functionals. For the one-dimensional

time-parameter case one can find an interesting subgroup of the rotation group 3
which is isamorphic to the projective special linear group. As a generalization r
to higher-dimensional case, Hida was able to introduce a subgroup, which is li
isomorphic to the conformal group arising from quantum field theory. The group
involves six one-parameter subgroups that are given below: '
[n-dimensional time parameter case) I

1) time shifts: § , i=1,2,..., n, :

2) isotropic dilation of time, -

1

PV PRI, v




s

ey .
o

d S

3) n-dimensional rotations, i.e. the group SO(n),

4) special conformal transformations given by
R S; R, R: reflection with respect to the unit sphere,
i = 1,2,0..’ n.

This approach is a development of the joint work with Mr. S.S. Lee and Mr. L.K.
Lee.

References

l. T. Hida, Brownian Motion, Springer-Verlag, 1980.

2. T. Hida, Analysis of Brownian Functionals, Carleton Math. lecture Notes,
No. 13, 1975.

3. T. Hida and G. Kallianpur, Finite dimensional approximation to white noise,
Center for Stochastic Processes Technical Report under preparation.
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D. KANNAN

1. PFeynman Integrals [1,2,3,4,5]

Further development of Kallianpur and Bromley's work has led to new
research in the following directions.

(a) Definition of sequential Feynman integrals (SFI) in an abstract
Wiener space set up. Concentrating attention on two physically interesting
classes of functionals, it is shown that the SFI includes and extends the
Fresnel integral of Albeverio and Hoegh-Krohn as well as the sequential path
integrals of Cameron-Storvick and of Truman (6].

(b) The Cameron-Martin formula for SFI obtained by Kallianpur is improved
by showing that it holds when the increasing projection family in Kallianpur's
proof is replaced by an arbitrary sequence of finite-dimensional projections
converging strongly to the identity. As a consequence, the generalit§ of the
result is considerably enhanced.

(c) Extension of SFI to cases that involve indefinite bilinear forms.

(d) Applications of the above work to the study of the Schroedinger
equation and of the stationary phase method is planned for‘ future work.

References '

1. S.A. Albeverio and R.J. Hgegh-Krohn, Mathematical theory of Feynman path in-
tegrals, Lecture Notes in Mathematics, No. 23, Springer-Verlag,
(1976).

2. G. Kallianpur and C. Bromley, Generalized Feynman integrals using analytic
continuation in several complex variables, Center for Stochastic Pro-
- cesses Technical Report No. 1, October 1981,

3. A. Truman, The Feynman maps and the Wiener integral, J. Math. Physics 19,
1978.

4. K.D. Elworthy and A. Truman, A Cameron-Martin formula for Feynman integrals
(The origin of the Maslov indices), Invited lecture given at y1th

International Conference on Mathematical Physics, Berlin, August,
1981.
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N 5. R.H. Cameron and D.A. Storvick, Analytic Feynmen integral solutions of an
;-ﬂ:j integral equation related to the Schroedinger equation, J. d'Analyse
o Math. 38, 1980.

6. G. Kallianpur and D. Kannan, Sequential Feynman integrals, Center for Sto-
chastic Processes Technical Report in preparation.
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1. Ramsey Theory

Kolzow gave a comprehensive series of lectures on the "Applications of

Ramsey Theorems to Analysis and Probability." These lectures, which included
some new research, presented a unified method of treating problems in analysis, ’
probability theory, using Ramsey theory techniques. Same are listed below:
(i) Sucheston's and lorentz's extension of a theorem of Menshov and Visser on
mixing sequence of events. Kolzow gave a sinmpler proof of this result. In
addition, a new existence theorem for subsequences which are stable of any
order. (ii) The infinite Ramsey theorem and a theorem of Erdos-Rado. (iii)
Schrader's extension of Helly's selection theorem.

2. The Radon Transform

Research on the Radon transform centered around the following problems:

(a) Extension of the Radon transform to measures on a Separable Hilbert
space with respect to a given Gaussian measure.

(b) Proof (using Radon transforms) of the Wold-Cramér theorem on the
unique determination of a finite measure on R" by its values on half spaces.
Also, a derivation of an inversion formula.

(c) A "folklore" Wold-Cramdr theorem for separable Banach spaces and the

corresponding reconstruction problems were discussed.

3. Stochastic Radon Transform

I -4 IO

In cooperation with G. Kallianpur work was initiated for developing the
concept of a stochastic transform. In particuar, the work of éenccv and others

on an integral geometric approach to Iévy's Brownian motion was studied.
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H.H. KUO

ERRTRIE 3 R

1. Generalized Brownian Functionals and Donsker's Delta Function [1) v

In addition to giving a seminar in the Center, Kuo worked in a series of
private seminars with Hida and Kallianpur in which he expounded his approach to

generalized Brownian functionals. He has obtained several new results including

g Ao oriah e e ISR
el

a rigorous treatment of Donsker's delta-functional. Details of collaboration

]

".:'; with Hida have been given above in Hida's report. The possibility of using the
N

?’TZ white noise approach to the Malliavin Calculus was discussed in these seminars
o and we hope that it will lead to collaborative work on this subject.

2,

E-r.

::.

References

1. H.H. Kw, Donsker's Delta function as a generalized Brownian functional and
its application, to appear in Proc. of the IFIP-ISI Conference on

the Theory and Application of Random Fields, G. Kallianpur, ed.,
Springer, 1982,
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1. Continuous two—parameter second order stationary random fields [1)

Details are given in Kallianpur's report.

2. Markov property for Gaussian ultraprocesses [2]

In this joint work with A.R. Soltani the authors introduce Gaussian
processes taking values in ultradistributions. They obtain a general theorem
giving necessary and sufficient conditions for germ field Markov property in
terms of the structure of the reproducing kernel Hilbert space. The results of

Kusuoka (in the Gaussian case), Kallianpur-Mandrekar, Molchan and others are

obtained as a consequence.

3. Central limit problem in Banach spaces [3]

Work on this subject which was begun while Mandrekar was at the Center was
completed during his stay in Strasbourg. The Lecture Notes of a course given at

Strasbourg contains a general survey of the problems together with same new

work .

References

1. G. Kallianpur and V. Mandrekar, Commuting semigroups of isametries and Kar-
hunen representation of stationary random fields, Center for Stochas-
tic Processes Technical Report No. 7, March 1982. To appear in
Proc. of the IFIP-ISI Conference on the Theory and Application of
Random Fields, G. Kallianpur, ed., (to be published in the Springer
ILecture Notes Series). .

2. V. Mandrekar and A.R. Soltani, Markov property for Gaussian ultraprocesses,
Center for Stochastic Processes Technical Report No. 5, January 1982.

3. V. Mandrekar, Central limit problem and invariance principles on Banach

spaces, Lecture Notes, Institut de Recherche Mathematique Avancee,
Universite louis Pasteur, Strasbourg (1982),
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ALEKSANDER WERON

1. Decamposability of p—-cylindrical martingales [1]

A class of p-cylindrical martingales in locally convex spaces is studied.
We obtain a general form of convergent p-~cylindrical martingales in barrelled
spaces. Using the locally convex space technique, new results are deduced even
in Banach spaces. It is proved that for p > 1 the adjoint to p-absolutely
summing operator is p-decomposing for any p-cylindrical martingale.

This study is motivated by the remark of Metivier and Pellaumail ([2],
Chapter 6) that it is possible to develop the theory of stochastic integration
with respect to 2-cylindrical martingales in Banach spaces, cf. also (3]. The
important examples are cylindrical Brownian motion and white noise in time and
in space. Such processes have been discussed in connection with quantum field
theory, partial differential equations involving random terms and filtering

theory, cf. for example [4] and references therein.

2. Prediction of processes stationary in norm [5]

The classical L2 Wiener-Kolmogorov prediction theory has been extended to
the following two cases: (1) Lo; the concept of prediction for strictly
stationary sequences of random variables has been introduced py K. Urbanik
(1964) [6]. (2) LP, 1<ps<2; S. Cambanis, G. Miller and R. Soltani (1981-82)
[7,8] have developed the linear prediction theory for p-th order and stable
processes. It is very desirable to have analogues of the classical theory for
certain stochastic processes which are nearly, but not exactly, Gaussian or
second order.

In the search for the greatest common denominator of these two cases, the

notion of a process stationary in norm emerges. The starting points for

------
............
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j:Zj the present investigation are two questions arising immediately. First, does
i‘ one get the most general "reasonable" linear prediction theory by amalgamating
. these two known techniques? The answer is yes and the Wold decomposition as
.

B well as some characterizations of completely non-deterministic processes are

obtained. Secondly, linear predictors are limits, and the question arises in
- which sense do they converge. The present investigation concentrates on
convergence in Lp-norm, 0 <p <« , though many of the methods developed apply

as well to convergence in the topology of certain Orlicz and Lorentz spaces.
References
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[

General (asymmetric) stable variables and processes (1]

Sl

Previous research in the field of stable processes has dealt almost

exclusively with symmetric stable processes. This research deals with those

ENIALLR akh 2R

stable variables and processes where the symmetry requirement has been dropped.

B AR

Such "skewed" processes are clearly of wider applicability.

V0%

% Specifically, we determine the form of all strictly stable independent
\ increments processes and develop a Wiener-type stochastic integral with respect a
to these processes. We prove a generalization of the spectral representation ‘4
‘ theorem for symmetric stable processes to general stable processes: it says, *
X loosely, that all stable processes are stochastic integrals with respect to a i
stable process with stationary, independent increments and "maximum skewness."
With the aid of the representation, we solve same regression problems. For
example, we show that the regression of one stable variable upon another is not
I always linear, in sharp contrast with the symmetric case. We determine
\ necessary and sufficient conditions for its linearity and determine the
N
\

regression function when it is not linear.

Also, some decompositions of general stable distributions are given and

some moment inequalities are proved.

References

1. C.D. Hardin, General (asymmetric) stable variables and processes, Center for
Stochastic Processes Technical Report in preparation.
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';::i Stochastic inteqrals for Gaussian processes:
v

o the differential formula (1)

Stochastic integrals for Gaussian processes were developed in [2] as a
natural extension of Ito's integral for a Wiener process. The corresponding
stochastic calculus is developed further in this paper. By exploiting the
tensor product structure of the nonlinear space of a Gaussian process, a
stochastic differential formula is obtained analogous to the celebrated Ito

formula. An application of the differential formula to inequalities for the

multivariate normal distribution is also given.

References

1. S.T. Ruang, Stochastic integrals for Gaussian processes: The differential

formula, Center for Stochastic Processes Technical Report under pre-
paration.

2. S.T. Huang and S. Cambanis, Stochastic and multiple Wiener integrals for
Gaussian processes, Ann. Probability 6 (1978), 585-614.
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g JORG HUSLER g
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1 " : . o 4
' Dr. Husler's work under the contract involved investigation of extremes of iy
;- 4
r non-stationary stochastic sequences. 1In particular general dependence .-
X -3
: conditions were cbtained under which certain distributional extremal results for i
C »)

stationary sequences still hold for non-stationary cases. This research was e

. reported in a technical report described in the following abstract.

Extreme values of non-stationary sequences and the extremal index [1)

The conditions used to generalize the extreme value theory for stationary
random sequences to non-stationary sequences are studied with respect to their
necessity. We find that the extremal index, defined in the stationary case,
plays a similar role in the non-stationary case. The details show that this
index describes not anly the behavior of exceedances above a high level constant
boundary, but also above a non-constant high level boundary.

References
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1. Nonlinear Filtering Theory (1,2}
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Details are given in Kallianpur's report.
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2. Other Related Work in Progress

(i) Nonlinear filtering problems for two-parameter processes. It
appears that the white noise approach is a natural and, perhaps, a simpler
technique than 2-parameter martingale theory. The latter has been used in work
of E. Wong (and M. Zakai), by H. Korezlioglu and others in multiparameter
filtering problems. (ii) Likelihood rations for 2-parameter processes, again

using the white noise model. Details will be given in a later report.
References
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to nonlinear filtering, Center for Stochastic Processes Technical Re-
port No. 21, October 1982. To appear in J. of Appl. Math. Opt.

2. G. KRallianpur and R.L. Karandikar, A white noise approach to nonlinear fil-
tering—infinite dimensional signal and observation process, Center
for Stochastic Processes Technical Report in preparation. .
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tions on Hilbert spaces, J. Appl. Math. Opt. 3, 1977.
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WILLIAM P. McCORMICK

Dr. McCormick has conducted research in the area of extremes of stationary
Gaussian (normal) sequences. Work completed and reported as a technical report
concerns the limiting distribution of the size of the jumps in the sequence of
partial maxima. Current work involves probability-one results and in particular
strong laws for extremes of Gaussian sequences. An abstract for the reported

work and summary of work in progress are as follows.

1. A conditioned limit law result for jumps in the sequence of partial maxi-

ma of a stationary Gaussian sequence [1]

Conditional on a junp occurring, the limiting distribution for the size of
the jump in the partial maxima sequence for a class of stationary Gaussian
sequences is derived. It is shown that the limiting distribution is exponential

with mean (1—3)1/2

where a eguals the atom at zero of the spectral
distribution function associated with the correlation function of the sequence.
This result is generalized to include the entire junp sequence subsequent to a

jump conditioned to occur. -

2. A strong law result for extreme values fram Gaussian sequences [2]

In a recent paper V. Hebbar [3] showed the following result. If (X_,n31)
is a stationary sequence of standard normal variables having correlation

function r, and if M, = max(xl,xz,..., X ), S_. = second max

n n
-1/2 1/2
(xl,xz,..., xn), a, = (loglogn)(2logn) 4 and bn = (2logn) /2 _

(loglogn + log4 )(810:_:;n)—'1/2 then under the assumption that

______________
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i
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r (logm?* = 0(1) as n> =
for some a> 0 we have that the set of almost sure limit points of
M -b S -b ]
{ (21 HLLE L} nzl} '
a ’ a !
n n
ocoincides with the set i
A=[(x,y): O<ysx and x+y<1] .
My work improves Hebbar's result by relaxing the mixing conditions. It is shown

that the above result remains true under the assunption r, logn = 0(1).

Dl i

References
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chastic Processes Technical Report No. 17, August 1982.
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2. W.P. McCormick, A strong law result for extreme values from Gaussian se-

quences, Center for Stochastic Processes Technical Report under pre-
paration.
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3. V. Hebbar, A law of the iterated logarithm for extreme values from Gaussian
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1. large Deviation Theory

L MR M)
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I investigated, jointly with Professor G. Kallianpur, possible extensions
of large deviation thoery (see [1] and references therein)., For the case of

Markov processes we attempted to derive the results of Dansker and Varadhan

TR A ROV

using multinomial type approximations. Same of the results obtained by us were
found to be contained in an article of L.B. Boza and our work was continued in
other directions. We worked on extending to more general cases the Bahadur

approach for the i.i.d. case in the derivation of the point entropy function.

2. Disintegration Problems

We worked on unifying known theorems on disintegration of probability
spaces and some related guestions. We pursued the invariant measure problem
connected with recent attempts on descriptive characterization of dynamical

systems.

3. Stochastic Filtering Theory

In order to pursue some research problems in this area, we undertook a =
planned study of stochastic filtering theory as developed in the recent bock of H
Professor Kallianpur [2] and related monographs. I gave lectures on the Ito

stochastic integral and linear stochastic differential equations to graduate

students who wanted to pursue this topic.
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Weighted quantile sampling in estimating the integral

of a stochastic process [1]

:fﬁ The integral of a stochastic process over an interval is estimated by a
_‘ weighted linear conbination of observations of the process at n points. The
. estimate is obtained by first dividing the interval into m subintervals whose
endpoints consititute a reqular sequence of points corresponding to a given
density. Then n' sample points are chosen from each subinterval as certain
fixed quantiles of the uniform density over that subinterval. (Here n' m = n
and n' does not depend on n). The weights are chosen to depend only on the
quantile corresponding to each sample point within a subinterval.

Asymptotic expressions for the mean square error are obtained for midpoint
sampling (n'=l) introduced by Tubilla (2] and for more general sampling schemes.
It is seen that the rate of convergence of the mean square error to zero is

- i LI
n 2 min(¢,n*) 2, where the process has at least £ continuous quadratic mean

derivatives. The rate obtained in the literature for a sequence of
asymptotically optimal estimators is n 242 1n certain cases, e.g., when £ = >
1, n'=1, and the quantile chosen is the median, the type of estimator considered

here is shown to be asymptotically optimal. | !

References

1. C. Schoenfelder, Weighted quantile sampling in estimating the integral of a !
stochastic process, Center for Stochastic Processes Technical Report
under preparation.

2. A. Tubilla, Erxrror convergence rates for estimates of multidimensional inte-
grals of random functions, Technical Report No. 72, Department of Sta-
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A.R. SOLTANI
Dr. Soltani completed his joint work with Professors Mandrekar and Cambanis
described in items 1 and 2 and pursued his own work on the extrapolation of

random fields described in item 3,

1. Markov property for Gaussian ultraprocesses (1]

We introduce Gaussian processes taking values of ultradistributions. We
obtain a general theorem giving necessary and sufficient conditions for germ
field Markov property in terms of the structure of the reproducing kernel
Hilbert space. As a consequence, we obtain results of Kusuoka (in Gaussian
case), Kallianpur-Mandrekar, Molchan, Rozanov, Okabe-Kotani, Kotani and Pitt.
The approach also explains the role of conditions put by the latter three

authors in the stationary case.

2. Prediction of stable processes: Spectral and moving average

representations [2)

For stable processes which are Fourier transforms of processes with

independent increments we obtain a Wold decomposition, we characterize their :
regularity and singularity, and, in the discrete-parameter case, we derive their
linear predictors. 1In sharp contrast with the Gaussian case, régular stable !
processes which are Fourier transforms of processes with independent increments

are not moving averages of stable motion.

3. Extrapolation and moving average representation for stationary randam

fields and Beurling's theorem [3]

Strong regularity for staitonary random fields is discussed. An extension

of the classical Beurling theorem to functions of several variables is given.
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Necessary and sufficient conditions for the moving average representation of

stationary random fields are obtained. A recipe formula for the best linear

extrapolator is also given,
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CHUNG~YI SUEN

Efficiency and optimality of factorially balanced designs

for correlated errors [1)

Under the assumptions of a linear model with fixed effects and
uncorrelated, homoscedastic errors, several classes of efficient, balanced
designs for factorial experiments were constructed in [2]. In this project, the
author has first studied the variations in the performance of the balanced
factorial experiments constructed in [2], under the assunption that the errors
are no longer homoscedastic and uncorrelated but are correlated according to the
nearest neighbor covariance model. Experimental arrangements which can be
derived from already constructed balanced designs so that these will attain high
efficiency and/or optimality (D-,A- or E-gptimal or weakly universally optimal)

under the nearest neighbor correlation model, are under investigation.

References
|
1. C. Suen, Efficiency and optimality of factorially balanced designs for cor-
related errors, Center for Stochastic Processes Technical Report un- J
der preparation. )
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1. Two parameter filtering problems using Radon transforms (1]

B AAATTENN 3§

Takenaka's projected research (which is still in progress) is to use white

noise and Radon transforms to solve certain 2-parameter filtering problems of

practical importance — e.g. image detection in x-ray pictures. The white noise

appears in the representation of 1évy's Brownian motion. A decamposition of

Ty s DR

white noise in spherical harmonics has been obtained in the course of the work. #
The techniques involved are related to the work of Gencov on IAvy's Brownian

motion and Helgason's work on the Radon transform.

i
References -
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2
4
.-J

oy

R B [
............
S e I i S

...........

P



0 .
.....................

AT
t
o
i
X
[
Y
1
5
T
R
‘l
K
*
"—i
‘4
3
)
K
-
<
1
<
4
1
.
o
’
[
i
L
L
L
L

¢ AN
]

&>

P

]

* PRI P

R. WOLPERT

1. Stochastic differential equations in infinite dimensional spaces

IS

This research is an outgrowth of the work on stochastic models for the

activity of neurons. The problem described in Kallianpur's report (para. 4(ii))

2 3
LRI

leads naturally to problems involving stochastic differential equations (SDE's)
for processes taking values in infinite dimensional Hilbert spaces or in S(le)':
(i) A natural derivation of the SDE for infinite dimensional Omstein-Uhlenbeck
type process is given based on the following simple considerations [4].

SO
ettt

(a) The process is Gaussian and (with suitable initial value) absolutely
y d
continuous with respect to S(R’)' —valued Wiener process;

(b) There exists a non-anticipative representation (in the sense of

Ll il

Kallianpur and Oocdaira) for any process satisfying (a);
(c) The process is Markov;

I
Vela a s s N

(ii) A model which studies activity of neurons which are spatially extended

(e.g. on dendrites) leads to an S'-valued, time-discontinuous process

,)‘-l.

satisfying an SDE which can be called an infinite dimensional analogue of the

e el )

Tuckwell-Cope model. The main result obtained pertains to weak convergence of
the corresponding measures P" defined on D({0,»),S') to an Omstein-Uhlenbeck

type process satiéfying a suitable SDE. Further generalizations are being

L tatete e S te 8
RAERORCAY - & VI TN

investigated [5]). The work has obvious connections with the work (on neuronal

activity) of J. Walsh, with the Holley-Stroock paper on infinite particle

,l! 1

. systems and with the string model of Funaki and of Miyahara.
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o L. HAZAREESINGH

Hazareesingh's main research work (which is being carried out partly for a
Doctoral thesis at the University of Georgia under the direction of Professor
Kannan) is in the theory of product integration in Banach algebras with unity,
in particular, the connection between the integration theory of Masani and that
of Lee. The following questions are being explored: (i) the product integral
representation of the generalized Fredholm determinant, (ii) path integration
using Masani's integral. The possibility of extending Hida's work on

generalized Brownian functionals is also being considered.
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RESEARCH IN ESTIMATION IN STATISTICAL MODELS

RAYMOND J. CARROLL

During the past year I have continued my research on robustness and the
linear model. Research has been focused on the following areas: robust and
efficient estimation in transformation models; robust estimation in models with
nonconstant variances (heteroscedasticity); linear and nonlinear models in which
some of the predictors are measured with error; applications of stochastic
approximation to help find optima in complex simulation models. My Ph.D.
student, Paul Gallo, completed his research and graduated with his Ph.D. degree
in August. I now have two additional students, David Giltinan and Len
Stefanski, who should complete their Ph.D. research by August, 1983. Gallo
worked in the linear errors-in-variables models, Giltinan is working on
robustness in heteroscedastic linear models and Stefanski is focusing on binary

regression models, discussing robustness and errors-in-variables.

1. Transformations and Regressions

Note: The first and second articles in this subheading are new. The third
and fourth are completion (new theory, examples of Monte Carlo) of work listed

last year as "in preparation.” The fourth was inadvertently omitted last year.

{1] Tests for reqression parameters in power transformation

models

We study tests of hypotheses for regression parameters in the power
transformation model. In this model, a usual test consists of estimating the

correct scale and then performing the usual linear model F-test in this estima-
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f. ted scale. We explore situations in which this test has the correct level
I‘Ef asymptotically as well as comparable power to Wald's test or the lik321lihood

ratio test. In particular, the correct level is attained for simple linear
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regression, randomized analysis of covariance and same simple factorial designs.
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In most multiple regression models, the usual test has the wrong level; the

exceptions depend on various forms of orthogonality.

[2] Power transformations when fitting theoretical models to

data (with D. Ruppert)

GadElfl I A - & _ o
; aef
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We investigate power transformations in nonlinear regression problems when

there is a physical model for the response but little understanding of the

underlying structure. In such circumstances and unlike the ordinary power
transformation model, both the response and the model must be transformed
simultaneously and in the same way. We show by an asymptotic theory and a small
Monte Carlo study that for estimating the model parameters there is little cost
for not knowing the correct transform a priori; this is in dramatic contrast to
the results for the usual case that only the response is transformed. Examples
are included; in particular, we consider in detail the spawner-recruit

relationship for Atlantic menhaden, as well as an example from chemistry.

[3) Prediction and power transformations when the choice of

power is restricted to a finite set.

We study the family of power transformations proposed by Box and Cox (1964)

«
.
‘
1
i
i
1

when the choice of the power parameter 1is restricted to a finite set R

The behavior of the Bax—Cox procedure is as anticipated in two extreme cases: :
when the true parameter loisanelementofﬂamduhen Xois "far" from

Q.. We study the case in which )\0 is "close™ to

R finding that the

E‘I

resulting methods can be very different from unrestricted maximum likelihood and
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that inferences may depend on the design, the values of the regression
parameters, and the distance of 7\0 to Q. The paper focuses on prediction

and is thus a companion to [4] by Carroll and Ruppert. We find in particular

PEDNT TR ARl o SiUERd L B AL

that data transformation can be very costly in the sense that prediction

estimates are often much more variable than is generally recognized.

CERe YDy

BN A RO S -4 PR

N (4] On prediction and the power transformation family (with D. Ruppert).

The power transformation family is often used for transforming to a normal

i linear model. The variance of the regression parameter estimators can be much
: larger when the transformation parameter is unknown and must be estimated,
I'-j: compared to when the transformation parameter is known. We consider prediction

of future untransformed observations when the data can be transformed to a
linear model. When the transformation must be estimated, the prediction error
is not much larger on average than when the parameter in known. However, the

accuracy of prediction at individual design points can be greatly affected by

data based transformation.

2. Heteroscedastic Linear Models

Note: The first article in this subheading is a completion and revision of

be ot
(U SF TN

work listed last year as in "preparation."” The second and third are

b
comprehensive revisions of earlier work, especially through the éarputations. ”
The fourth is still in preparation.
{5] Robust estimators for random coefficient reqression models !
(with D. Ruppert). |

Random coefficient regression models have received considerable attention,
especially from econometricians. Previous work has assumed that the !
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coef f icients have normal distributions. The variances of the coefficients have,
in previous papers, been estimated by maximum likelihood or by least squares
methodology applied to the squared residuals from a preliminary (unweighted)
fit. In this paper we propose several robust estimators for random coefficient
models. We compare them by Monte Carlo with estimators based on least squares
applied to the squared residuals. The robust estimators are best overall, even
at the normal model.

(6] Adapting for heteroscedasticity in linear models

In a heteroscedastic linear model, it is known that if the variances are a
parametric function of the design, then one can construct an estimate of the
regression parameter which is asymptotically equivalent to the weighted least
squares estimate with known variances. We show that the same is true when the
only thing known about the variances is that they are an unknown but smooth
function of the design or the mean response. Same preliminary Monte Carlo is

very encouraging.

{7] A camparison between maximum likelihood and generalized least

squares in a heteroscedastic linear model (with D. Ruppert).

We consider a linear model with normally distributed but heteroscedastic
errors. When the error variances are functionally related to the regression
parameter, one can use either maximum likelihood or generalized least squares
to estimate the regression parameter., We show that likelihood is more sensitive
to small misspecifications in the functional relationship between the error
variances and the regression parameter. Monte Carlo work demonstrates that in
small samples, a proper robust generalized least squares as proposed in [13] by

Carroll and Ruppert is far superior to maximum likelihood.
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(8] Bounded influence methods for heteroscedastic regression

models (with D. Ruppert and D. Giltinan).

In [13], Carroll and Ruppert introduced a class of distribution robust
estimators for the regression model with non-constant variance. This paper
introduces methods for bounding the influence of extraordinary design as well as

ocutlying responses. (Note: this manuscript is still in preparation).

3. Linear and Binary Regression Models with Errors-in-Variables

Note: The first two items in this section were listed last year as "in

preparation.” This third is new.

[9] Same aspects of robustness in the functional errors-in-

variables regression model (with Paul Gallo).

This paper considers regression models in which some of the predictor

variables are measured with error. We present a class of distribution robust

estimators for the regression coefficient and prove consistency and asymptotic
normality. A’ Monte Carlo study is also included, showing that our methods can

be very successful.

[10] Carparisons between same estimators in functional errors-in-

3
:
"

variables regression models (with Paul Gallo).

We study the functional errors-in-variables regression model. 1In the case
of no equation error (all randomess due to measurement errors), the maximum
likelihood estimator (MLE) camputed assuming normality is asymptotically better -
than the usual moments estimator, (MME), even if the errors are not normally '
distributed. Our Mmnte Carlo study confirms this result, but shows that there

are good reasons to favor the moments estimator for samples of the size !

ordinarily encountered in practice.

.................
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:j For certain statistical problems such as randomized two group analysis of
.

) covariance, the least squares estimate is shown to be better than the
' aforementioned errcors-in-variables methods for estimating certain important

contrasts. We also consider the robust methods we introduced in [9], showing

them to be preferable to both the MLE and the MME in many circumstances.

IR T SR ERIIh-J DA AN S
IS -~ SF

(11] Errors-in-variables for binary regression models (with C. Spiegelman
¥ and R. Abbott).

We consider in detail probit and logistic regressions models when some of
the predictors are measured with error. For normal measurement errors, the
functional and structural maximum likelihood estimates (MLE) are considered; in
the functional case the MLE is not generally consistent. By an example and a
simulation, we show that if the measurement error is large, the usual estimate

of the probability of the even in question can be substantially in error,

especially for events of high probability. :

4, Other Topics "

ol

[12] Consistency and asymptotic normality for binary errors-in- !
variables models (with D. Ruppert and L. Stefanski). g

In (10], Carroll, et al. considered binary regression (e.g., 'logistic and :
' )

probit regression) when some of the predictors are measured with error. If the
predictors are treated as non-random (the functional model), they showed that

the MLE is inconsistent in general for the binary regression parameter. We

consider the case that independent replications of the predictor variables are
made. We obtain sharp results on the size of m(N) relative to N necessary for
consistency and asymptotic normality. (Note: this manuscript is still in

preparation).
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[13] Monte-Carlo optimization by stochastic approximation, with appli-

cation to harvesting of Atlantic menhaden (with D. Ruppert, R.L.

Reish and R.B. Deriso).

In a recent study of the Atlantic menhaden, a commercially important fish
in the herring family (Clupeidae), we made extended use of stochastic
approximation. This paper in is intended to introduce stochastic approximation
to those statisticians unfamiliar with the area. A stochastic simulation model
of the menhaden population is used as an example, but the paper is not addressed
to only those working in fisheries. In this model, two variables are used to
define the harvesting policy. For any values of these variables, the model will
produce a random catch, and for a specified utility function the objective is to
find the values of the variables vwhich maximize the expected utility of the
catch. Therefore, this is a classical response surface problem. However,
nonsequential response surface methods would be extremely expensive to apply
here. We used stochastic approximation to estimate the policy maximizing the

expected utility of the catch.
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[1} cCarroll, R.J. Tests for regression parameters in power transformation
models. To appear in the Scandinavian Journal of Statistics.

[2] Carroll, R.J. and Ruppert, D. (1982)., Power transformations when fitting
theoretical models to data. Institute of Statistics Mimeo Series No.

[{3] carroll, R.J. (1982). Prediction and power transformations when the
choice of power is restricted to a finite set. To appear in the
Journal of the American Statistical Association.

{4] carroll, R.J. and Ruppert, D. (1981). Prediction and the power transfor-
mation family. Biametrika 68, 609-616.

[S] Carroll, R.J. and Ruppert, D. (1982). Robustness estimators for random
coefficient regression models. To appear in "Contributions to Statis-
tics. Essays in Hoour of Professor Norman L. Johnson, P.K. Sen, ed.,
North Holland.

[6] Carroll, R.J. (1982). adapting for heteroscedasticity in linear models.
To appear in the Annals of Statistics.

[7]) carroll, R.J. and Ruppert, D. (1982). A comparison between maximum likeli-
hood and generalized least squares in a heteroscedastic linear model.
To appear in Journal of the American Statistical Association.

(8] Carroll, R.J., Giltinan, D. and Ruppert, D. (1983). Bounded influence
methods for heteroscedastic regression models. In preparation.

[9] Carroll, R.J. and Gallo, P. (1982). Same aspects of robustness in the
functional errors-in-variables regression model. Special invited
paper, Communications in Statistics, Series A, to appear.

(10] Carroll, R.J. and Gallo, P. (1982). Carparisons among estimators for the
functional errors-in-variables regression model.

(11] Carroll, R.J., Spiegalman, C.H., and Abbott, R.D. (1982). Errors-in-
variables for binary regression models.

[12]) Carroll, R.J., Stefanski, L. and Ruppert, D. (1983). Consistency and
asynptotic normality for binary errors-in-variables models. 1In pre-
paration.

{13) Ruppert, D., Reish, R.L., Deriso, R.B. and Carroll, R.J. (1982). Monte
Carlo optimization by stochastic approximation with application to
harvesting of Atlantic menhaden.

[14] Carroll, R.J. and Ruppert, D. (1982). Robust estimation in heteroscedastic
linear models. Annals of Statistics 31, 149-152.
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R.J.
R.J.
N N.L.

G.J.

PUBLICATIONS

D.G. Briles and R.J. Carroll, A simple method for estimating the number of

different antibodies by examining the repeat frequencies of sequences
of isocelectric focusing patterns, Molecular Immunology 18, (1981),
29-38.

S. Cambanis and G. Simons, Probability and expectation inequalities, Z.

Wahrscheinlichkeitstheorie verw. Geb., 59, (1982), 1-25.

,* S. Cambanis and M. Habib, Finite sampling approximations for non-band-limited
vk

signals, IEEE Trans. Information Theory IT-28, (1982), 67-73.

R S. Cambanis and E. Masry, Truncation error bounds for the cardinal sampling

expansion of bandlimited signals, IEEE Trans. Information Theory, IT-
28, (1982), 605-612.

Carroll, Two examples of robust transformations -then there are no outliers,
Appl. Statist. 31, (1982), 149-152.

Carroll, Robust estimation in certain heteroscedastic linear models when
there are many parameters, J. Statist. Plan. and Infer. 7, (1982), 1-12.

Carroll and P.P. Gallo, Some aspects of robustness in the functional
errors-in-variables regression model, Com. Statist. — Theor. Meth, 11,
(1982), 2573-2585.

Carroll and D. Ruppert, On robust tests for heteroscedasticity, Ann.
Statist. 9, (1981), 206-210.

Carroll and D. Ruppert, Prediction and the power transformation family,

Biometrika 68, (1981), 609-616.

Carroll and D. Ruppert, Robust estimation in heteroscedastic linear models,
Ann, Statist. 10, (1982), 429-441.

Gerr and S. Cambanis, Delayed delta moodulation, Proc. 1982 Conference on
Information Sciences and Systems, Princeton University, pp. 134-137.

Johnston, Probabilities of maximal deviations for nonparametric regression
function estimates, J. Multivariate Anal. 12, (1982), 402-414.

M. Habib and S. Cambanis, Dyadic sampling approximations for non-sequency-limi-

ted signals, Information and Control 49, (1981), 199-211. (Not included
in last year's report).

R.W. Haley, R.J. Carroll, et al., The joint associations of multiple risk

factors with the occurrence of nosocomial infection, Amer. J. Medicine
70, (1981), 960-970.

G. Kallianpur, Same ramifications of Wiener's ideas on nonlinear prediction, in

Norbert Wiener, Collected Works Volume III, P, Masani, ed., MIT Press,

(1981), pp. .
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l ' G. Kallianpur, A generalized Cameron-Feynman integral, Statistics and Proba-
3 bility: Essays in Honor of C.R. Rao, G. Kallianpur, P.R. Krishnaiah and
J.K. Ghosh eds., North Holland (1981), pp. 369-374.

R.W. Keener, Renewal theory for Markov chains on the real line, Ann., Proba-
bility 10, (1982), 942-954,

M.R. Ieadbetter and H. Rootzén, Extreme value theory for continuous parameter
stationary processes, Z. Wahr. verw. Geb. 60, (1982), 1-20.

A.J. lee, A note on the Campbell sampling theorem, SIAM J. Appl. Math. 41,
(1981), 553-557. ‘

C. Schoenfelder and S. Cambanis, Random designs for estimating integrals of sto-
chastic processes, Ann. Statist. 10, (1982), 526-538.

J. Sternby and H. Rootzén, Martingale theory in Bayesian least squares estima-
tion, Proc. 6th IFAC Symposium on System Identification and Parameter Esti-
mation, Washington, DC, June 1982,

V. Watts, H. Rootzén and M.R. leadbetter, On limiting distributions of interme-
diate order statistics from stationary sequences, Ann. Prob. 10, 653-662.

ACCEPTED FOR PUBLICATION (after November 1, 1982)

S. Cambanis, Camplex symmetric stable variables and processes. To appear in
*"Contributions to Statistics: Essasys in Honour of Professor Norman L.
Johnson,” P.K. Sen, Bd., North Holland, New York, 1982.

S. Cawanis and E. Masry, Sampling designs for the detection of signals in
noise, IEEE Trans. Information Theory, IT-29, Jan. 1983.

R

S. Cambanis, R. Keener and G. Simons, On o-symmetric multivariate distributions, ::.Ij
J. Multivariate Anal., 1983, to appear. o

. ':\

S. Cambanis and N.L. Gerr, A sinple class of asymptotically optimal quantizers, i
1EEE Trans. Information Theory, IT-29, 1983, to appear. %

R.J. Carroll, Adapting for heteroscedasticity in linear models, Ann, Statist., -
1982, to appear. -

R.J. Carroll, Tests for regression parameters in power transformation models, i
R.J. Carroll, Power transformations when the choice of power is restricted to a
finite set, J. Amer. Statist. Assoc., 1982, to appear. -".-

R.J. Carroll, Discussion of Huber's paper "Minimax aspects of bounded influence !
regression,” J. Amer, Statist. Assoc., 1982, to appear. "
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R.J. Carroll, R.N. Holt and V. Scarpello, Towards understanding the contents of
the "Black Box" for predicting ocomplex decision making ocutcomes, Decision
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Sciences, (1982), to appear.
R.J. Carroll and D. Ruppert, A comparison between maximum likelihood and gene-
- ralized least squares in a heteroscedastic linear model, J. Amer.
3:;3 Statist. Assoc., 1982, to appear.
L:gff
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-

R.J. Carroll and D. Ruppert, Weak convergence of bounded influence regression
estimates with applications to repeated significance tests in clinical
trials, J. Statist. Plan. and Infer., 1982, to appear.

ot

-~ (Y

R.J. Carroll and D. Ruppert, Robust estimators for random coefficient regression
models. To appear in "Contributions to Statistics: Essays in Honour of
Professor Norman. L. Johnson,” P.K. Sen, Bd., North Holland, New York,
1982.

G. Kallianpur, On the diffusion approximation to a discontinuous model for a
single neuron. To appear in "Contributions to Statistics: Essays in
Honour of Professor Norman L, Johnson," P.K. Sen, Ed., North Holland, New
York, 1982,

G. Kallianpur and C. Bromley, Generaliz=d Feynman integrals using analytic con-
tinuation in several complex variables, Stochastic Analysis, M. Pinsky,
ed., Marcel-Dekker, (1982), to appear.

G. Kallianpur and R.L. Karandikar, A finitely additive white noise approach to
nonlinear filtering, J. of Appl. Math. Opt., 1982, to appear.

G. Kallianpur and V. Mandrekar, Nondeterministic random fields and Wold and Hal-
mos decompositions for commuting isometries, Prediction theory and
Harmonic Analysis, A Pesi Masani Volume, V. Mandrekar and H. Salehi, eds.
North Holland, (1982), to appear.

G. Kallianpur and V. Mandrekar, Cammting semigroups of isometries and Karhunen
representation of stationary random fields, Proc. of the IFIP-ISI Confer-
ence on the Theory and Application of Random Fields, G. Kallianpur, ed.,
Springer lecture Notes Series, to appear.

G. Kallianpur and D. Ramachandran, On the splicing of measures, Ann. Proba-
bility, 1983, to appear.

M.R. Leadbetter and D. Wold, On estimation of point process intensities. To
appear in "Contributions to Statistics: Essays in Honour of Professor
mn Lo Jdmsm'” p.x. se" a.. mrth l’bl]ﬂﬂd, 1982.

J. Milliken, M.R. Leadbetter and R.J. Carroll, Hazard indicators for polycyclic
organic matter, Proc. 1982 P.0.M. Conference, Battelle, Columbus, Ohio,
to appear.
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CENTER FOR STOCHASTIC PROCESSES
TECHNICAL REPORTS

1. "Generalized Feynman integrals using analytic continuation in several complex
variables." G. Kallianpur and C. Bromley, Oct. 81.

2. "Nondeterministic random fields and Wold and Halmos decompositions for
commuting isometries.” G. Kallianpur and V. Mandrekar, Nov. 81,

3. "Sampling designs for the detection of signals in noise." S. Cambanis and
E. Masry, Oct, 81,

4. *On the splicing of measures.” G. Kallianpur and D. Ramachandran, Dec. 81.

5. "Markov property for Gaussian ultraprocesses.” V. Mandrekar and A, Soltani,
Jan, 82,

6. "Random designs for estimating integrals of stochastic processes:
Asynptotics." C. Schoenfelder, Feb. 82.

7. "Commuting semigroups of isometries and Karhunen representation of second order
stationary random fields." G. Kallianpur and V. Mandrekar, Mar. 82.

8. "A simple class of asynptotically optimal quantizers." §S. Cambanis and
N. Gerr, May 82.

9, "Extrapolation and moving average representation for stationary random fields
and Beurling's theorem.™ A. Soltani, May 82,

10. "Complex symmetric stable variables and processes." S. Cambanis, June 82.

11. "pPrediction of stable processes: Spectral and moving average representations.”
S. Cambanis and A. Soltani, May 82.

12. "Extremes and local dependence in stationary sequences."” M. Leadbetter,
June 82, .

13. "A Cameron-Martin formula for Feynman integrals."” G. Kallianpur, June 82.

14. "Bivariate extremes: Models and statistical decision.” T. de Oliveira,
June 82,

15. "A spectral representation for max-stable processes.” L. de Haan, July 82.

16. "On estimation of point process intensities."” M.R. Leadbetter and Diane Wold,
July 82.

17. "A conditioned limit law result for jumps in the sequence of partial maxima of a
stationary Gaussian process."” William P. McCormick, August 82,

18. "On the diffusion approximation to a discontinuous model for a single neuron.”
G. Kallianpur, Aug. 82,
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19. "Decamposability of p—cylindrical martingales.™ 2. Suchanecki and A. Weron,
Oct. 82. i

“Extreme values of non-stationary sequences and the extremal index." Jurg
Husler, Oct. 82.

"A finitely additive white noise approach to non-linear filtering." G. Kallianpur ]
and R.L. Karandikar, Oct. 82. :

*Bxact analysis of a delayed delta modulator and an adaptive differential pulse-
code modulator."” N.L. Gerr, Nov. 82,

"Nonparametric spectral density estimation for stationary stable processes." E.
Masry and S. Cambanis, Dec. 82.

P

TECHNICAL REPORTS IN PREPARATION
"On renewal processes and zeros of Gaussian noise.” J. de Mare, in preparation.
"General (asymmetric) stable variables and processes," C.D. Hardin, in preparation.

"Finite dimensional approximation to white noise,"™ T. Hida and G. Kallianpur, in
preparation.

"Stochastic integrals for Gaussian processes: The differential formula," S.T. Huang,
in preparation.

"Sequential Feynman integrals,” G. .Kallianpur and D, Kannan, in preparation.

"A white noise approach to nonlinear filtering-infinite dimensional signal and obser-
vation process," G. Kallianpur and R.L. Karandikar, in preparation. :

" s( nd)'-valued diffusion approximations to stochastic models for spatially distri- i
uted neuronal responses,™ G. Kallianpur and R. Wolpert, in preparation.

"A derivation of Ornstein-Uhlenbeck type stochastic differential equations for in-
finite dimensional processes,” G. Kallianpur and R. Wolpert, in preparation.

“Extremes of non-stationary normal sequences,” M.R. Leadbetter, in préparation.

"A strong law result for extreme values from Gaussian sequences," W.P. McCormick,
in preparation.

"Weighted quantile sampling in estimating the integral of a stochastic process,"
Carol Schoenfelder, in preparation.

*On constructions of balanced factorial experiments," C. Suen, in preparation.

*Prediction of processes stationary in norm," A. Weron, in preparation.

. D.J. Daley and P. Hall, Limit laws for the maximum of weighted i.i.d. random

variables, Center for Stochastic Processes Technical Report in pre-
paration.

. D.J. Daley, The tight lower bound on the mean waiting time in a class of

GI/G/1 queues, Center for Stochastic Processes Technical Report in
preparation.
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INSTITUTE OF STATISTICS MIMEO SERIES TECHNICAL REPORTS

Carroll, R.J. and D. Ruppert: Power transformations when fitting theoretical
models to data, Jan. 1982, #1383,

Ruppert, D., Reish, R.L., Deriso, R. and Carroll, R.J.: Monte Carlo optimi-
zation by stochastic approximation (with application to harvesting of
Atlantic menhaden) April 1982, $1500.

Carroll, R.J., Spiegelman, C.H., Lan, K.K. G., Bailey, K.T. and Abbott, R.D.:
Errors-~in-variables for binary regression models, August 1982, #1507.

Carroll, R.J. and Gallo, P.: Cawparisons between some estimators in functional
errors—in-variables regression models, September 1982, #1508.

Gallo, P.P.: Properties of estimators in errors-in-variables regression models,
Oct. 1982, #1511.

IN PREPARATION

Carroll, R.J. and Abbott, R.D. Interpreting multiple logistic regression coef-
ficients in prospective dbservational studies.

Carroll, R.J., Giltinan, D. and Ruppert, D. Bounded influence methods for hete-
roscedastic regression models.

Carroll, R.J. and Lovbard, F. A note on estimating the binomial N.

Carroll, R.J., Stefanski, L. and Ruppert, D. Consistency and asynptotic normal-
ity for binary errors-in-variables models.

OTHER TECHNICAL REPORTS

Mandrekar, V., Central limit problem and invariance principles on Banach spaces,
Lecture Notes, Institut de Recherche Mathematique Avancee, Universite Louis
Pasteur, Strasbourg, 1982, (partial support of AFOSR).
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.‘\-,. STOCHASTIC PROCESSES SEMINARS

;J Nov. 4 On the reqularity and Markov property of homogeneous random fields,
“u

A.R. Soltani, University of North Carolina.

.
"ty
»

Nov. 9 Likelihood ratios for random fields, A.V. Balakrishnan, University of
California at Los Angeles.
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Nov. 19 Two Banach algebras of Feynman integrable functions, G.W. Johnson,
University of Nebraska.

Nov. 20 The role of Wiener processes in the Feynman integral and its generali-
zation, G. Kallianpur, University of North Carolina.

Dec. 2 Wold decomposition for random fields, V. Mandrekar, Michigan State
University and University of North Carolina.

Dec. 10 Rough surfaces and their modelling, R. Adler, Technion, Israel.
Dec. 14 Random fields with independent increments, R. Adler, Technion, Israel.

Jan. 25 Invariance principles for Banach space valued random elements and em~
pirical processes. W. Philipp, MIT and University of Illinois.

Jan. 27 Invariance principles for Banach space valued random elements and em-
pirical processes: Techniques, W. Philipp, MIT and University of
Illinois.

Jan. 28 Invariance principles for martingales, W. Philipp, MIT and University
of Illinois.

Feb. Same applications of Ramsey theorems to analysis and probability, A
2-16 series of lectures by D. Kolzow, University of Erlangen-Nurnberg.

Feb. 19 Same reconstruction problems in measure theory and probability, D.
Kolzow, University of Erlangen-Nurnberg.

Feb. Martingales, Markov processes (generators and local characteristics),
11-18 random measures and point processes, A series of seminars by G.
Kallianpur, University of North Carolina.

Feb. Functional central limit theorems for semi-martingales, A series of
22-23 seminars by V. Mandrekar, Michingan State University and University of
North Carolina.

Mar. Stochastic models for the activity of neurons, A series of seminars
17-3 by G. Kallianpur, University of North Carolina.

Apr. 1 Shape and duration of ™ clicks, G. Lindgren, University of Lund,
Sweden.

May 11 A measure-valued process in population genetics, D. Dawson, Carleton
University.
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v June 9 Regular variation, point processes, partial sums and maxima of i.i.d.

June 16

July 29

Aug. 12

Ag. 16
Ayg. 17

Aug. 20
Aug. 27
Sept. 1

Sept. 10

Oct
Oct
Oct. 13
Oct
Oct

. 27

random variables, L. de Haan, Erasmus University, Amsterdam and Uni-
versity of North Carolina.

Bivariate extremes: Models and statistical decision, J. de Oliveira,
University of Lisbon.

Consistent estimates of parameters in continuous time stochastic pro-~
cesses, A. Bagchi, University of California at lLos Angeles and Techni-
cal University of Twente, Holland.

A general principle for limit theorems in finitely additive probabili-
ty, R.L. Karandikar, Indian Statistical Institute and University of
North Carolina.

General boundary problems for linear differential operators, Yu. A.
Rozanov, Steklov Mathematical Institute and Moscow University.

Donsker's delta functional, H.H. Kuo, Louisiana State University.

Markov property of solutions of stochastic boundary problems, Yu. A.
Rozanov, Steklov Mathematical Institute and Moscow University.

Same aspects of statistical inference in stochastic processes, G.
Roussas, University of Patras, Greece.

Brownian functionals, T. Hida, Nagoya University and University of
North Carolina.

Generalized Brownian functionals and applications, T. Hida, Nagoya
University and University of North Carolina.

Infinite dimensional Ornstein-Uhlenbeck process and string model, Y.
Miyahara, Carleton University and Nagoya University.

On extreme values of non-stationary sequences, J. Husler, University
of Bern and University of North Carolina.

Dilation theory methods in stochastic processes, A. Weron, Wroclaw
Technical University and University of North Carolina.

Multiparameter Brownian motion, S. Takenaka, Nagoya University
and University of North Carolina.

Weak compactness problems, N. Dinculeanu, University of Florida.

Sequential urn problems imbedded in birth processes, J. Husler,
University of Bern and University of North Carolina.

Bxact and limiting distribution of sustained maxima, W.P. McCormick,
University of Georgia and University of North Carolina.

Similarities and contrasts between stable and Gaussian processes, S.
Cambanis, University of North Carolina.

.................
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LIST OF PROFESSIONAL PERSONNEL ASSOCIATED WITH THE RESEARCH EFFORT

1. Faculty Investigators: S. Cambanis
R.J. Carroll
G. Kallianpur
M.R. Leadbetter

el 2, Visitors Senior: D. Daley (Jan. 81)
N L. de Haan (May-July 82)
»’~‘.§ J. Tiago de Oliveira (June 82)
< T. Hida (Aug.. 82)
D. Kannan (May 82-present)
D. Kolzow (Oct.-Dec., 82)
A H.H. Kuo (Aug. 82)

3 V. Mandrekar (Nov. 81-Feb. 82)

2 A, Weron (Sept. 82-present)

* Junior: C. Hardin (Sept. 82-present)

\ S. Huang (June-Aug. 82)

e J. Hisler (Sept. 82)

- R.L. Karandikar (June 82-present)

L= W.P. McCormick (June 82-present)

;.::: D. Ramachandran (Nov. 81-May 82)

2% C. Schoenfelder (June-Sept. 82)
A.R. Soltani (Nov. 8l1-June 82)

’ C. Suen (Oct. 82)

- S. Takenaka (Sept. 82-present)

e R, Wolpert (June 82-present)

- 3. Graduate Students: D. Giltinan

' N.L. Gerr

o L. Hazareesingh

B L. Stefanski
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INTERACTIONS
November 1, 1981, through October 31, 1982

R.J. Carroll presented invited lectures at Texas A & M University, Southern
Methodist University, Virginia Technical University, Johns Hopkins University,
the National Institutes of Health (National Cancer Institute) and the University

of South Africa.

S. Cambanis presented invited talks at the meetings of the Institute of
Mathematical Statistics in Talahassee and of the American Mathematical Society
in Washington. He also gave talks at the Conference on Information Sciences and
Systems at Princeton, the International Symposium on Information Theory in Les
Arcs, France and the Conference on Stochastic Processes and Their Applications

in Clermont-Ferrand, France.

N.L. Gerr gave a talk at the Conference on Information Sciences and Systems

at Princeton.

M.R. Ieadbetter gave invited lectures at the Univarsity of Aarhus, Denmark;
Aalborg University, Denmark; University of Bern, Switzerland; Chalmers
University, Goteborg, Sweden and the University of Tennessee and was one of the
guest lecturers (giving two talks) at the (Dec. 1981) meeting of statisticians

held annually in Holland. He also completed a book (with G. Lindgren and H.

Rootzén) on extreme values, to be published by Springer-Verlag in early 1983.

M.R. leadbetter was elected to the Council of the Institute of Mathematical

Statistics and began service on that body at the annual meeting in August 1982.




............

G. Kallianpur presented the following:

3
l_:* (1) Invited talk at the ISI Golden Jubilee Conference on Statistics held in
;‘J December 1981 at the Indian Statistical Institute (ISI), Calcutta. [On
‘_ stationary random fields].
::_' (2) 1Invited talk at the IFIP-ISI Conference on the Theory and Application of
Random Fields held at the Bangalore Campus of the ISI, January 1982. {On
.. Feynman integrals].
\ (3) Invited address on Nonlinear Filtering Theory at the Workshop in Filtering
b and Control Theory at Bonn, West Germany (June 1982).
" (4) Invited lecture at the Conference on Stochastic Processes of the Barnoulli
Society at the University of Clermont-Ferrand, France (July 1982). [On Feynman
., integrals].
-:' (5) Invited talk at the Ecole Polytechnique in Paris, (July 1982). [On
__ nonlinear filtering-white noise approachl.
= (6) Three lectures on Stochastic Filtering Theory given at the invitation of
t’ . the joint seminar of Carleton University (Ottawa), University of Ottawa and the
Research Institute of the University of Montreal. (ILectures given at Montreal,
April 1982).
E:'_'.‘ (7) Invited talk given at the session on "The Legacy of Norbert Wiener" at the
‘: Meetings of the American Mathematical Society at the Universitg of Maryland,
" College Park, Maryland (October 1982).
(8) The Layman Lectures in the Mathematical Sciences given at the University of
: Nebraska, Lincoln, Nebraska (November 1982). [Feynman integrals and modern
‘ developments. in Filtering Theoryl.
t';;f (9) Participated by invitation, in the conference on Random Fields, Quantum
\ Field Theory and Differential Geometry sponsored by the American Mathematical
Soceity and organized by A. Jaffe and E. Dynkin. The conference was held at the
Sf University of New Hampshire in July 1982.
N
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(10) Together with Professor A.V. Balakrishnan of UCLA, organized the IFIP-ISI
conference on the Theory and Application of Random Fields held in Bangalore,
India (January 1982).

(11) Editor of the Proceedings of the Bangalore Conference on Random Fields (to
be published by Springer-Verlag).

(12) Editor (with P.R, Krishnaiah and J.K. Ghosh) of Essays in Honor of C.R.

Rao, published by North Holland (1982).
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